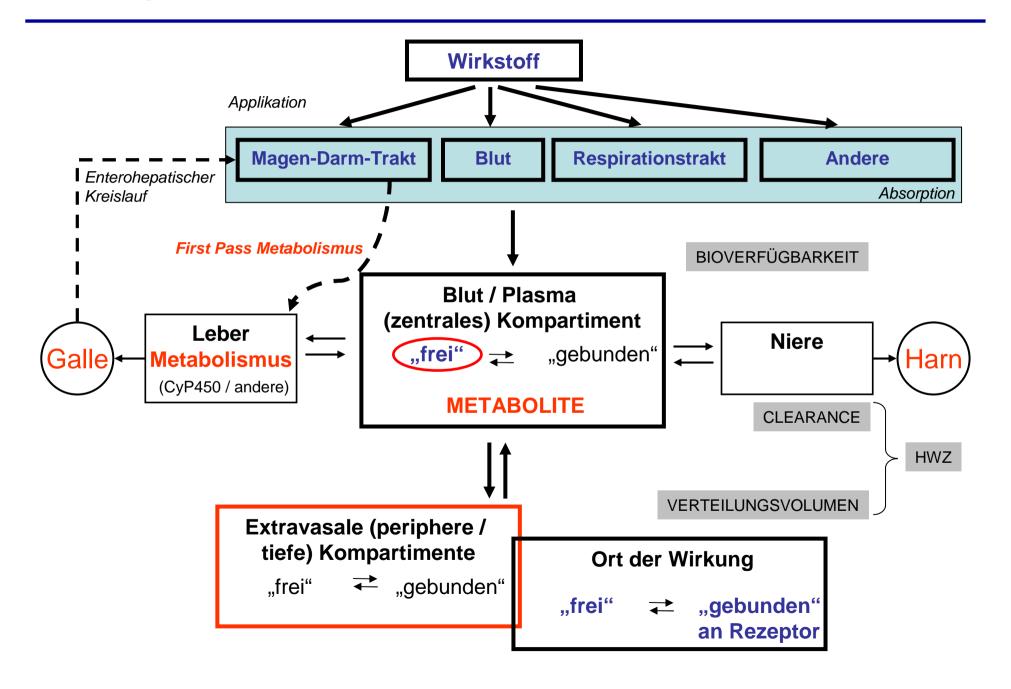
Dagmar Lampe und Torsten Binscheck

Drogenteste im Justizvollzug

Anforderungen an die Materialgewinnung und Interpretation

Berliner Betrieb für Zentrale Gesundheitliche Aufgaben (BBGes)


Institut für Toxikologie – Klinische Toxikologie und Giftnotruf Berlin

Oranienburger Str. 285 13437 Berlin www.bbges.de

Welche Fragen sollen im Justizvollzug durch Drogenkontrolluntersuchungen beantwortet werden?

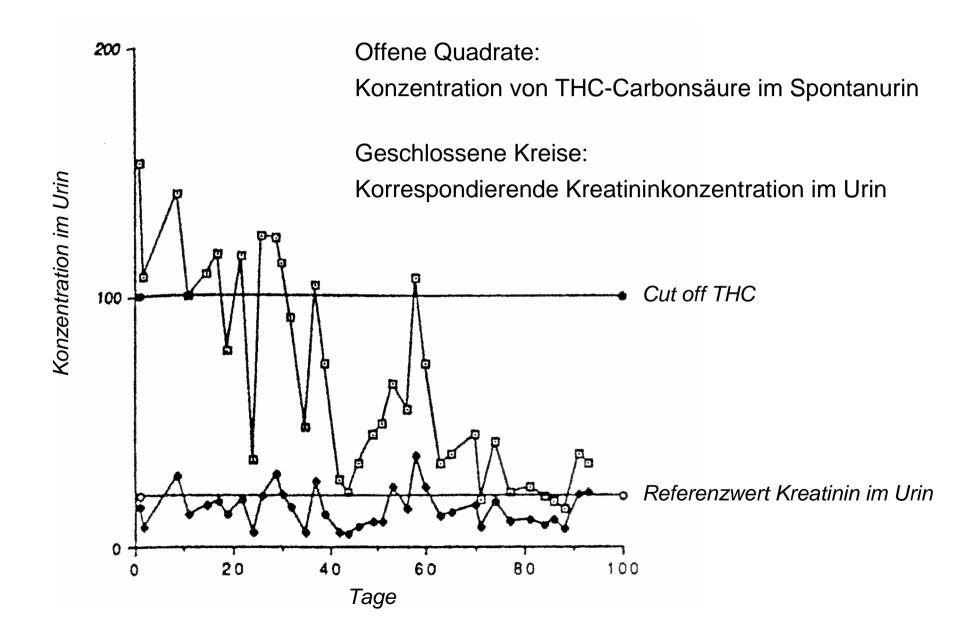
- 1) Hat der Proband Missbrauchssubstanzen konsumiert?
 - → "Drogentest"
- 2) Hat der Proband illegale Missbrauchssubstanzen konsumiert?
 - → Problemfall Opiate: Heroin, Codein, Mohnkuchen
- 3) Hat der Proband seit dem letzten positiven Test erneut Missbrauchssubstanzen konsumiert?
 - → Sonderfall Cannabinoide: Konzentrationsverlauf
- 4) Sind die Analysenergebnisse rechtsrelevant?

Was passiert mit Missbrauchssubstanzen im Menschen?

Die Wahl des Untersuchungsmaterials bestimmt in Abhängigkeit von der Pharmakokinetik der Substanz(gruppe) die Nachweisdauer des Substanzkonsums.

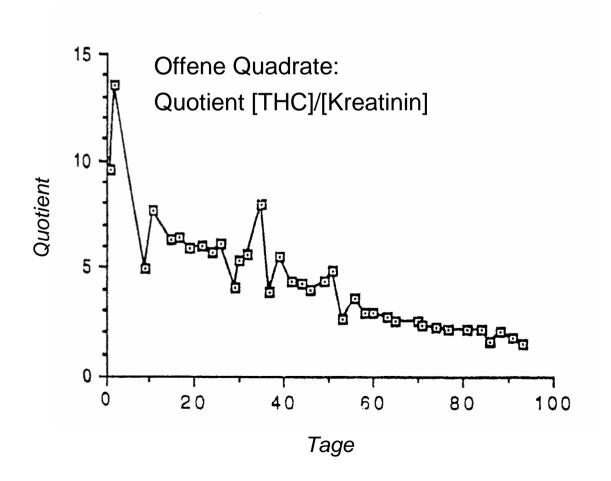
Material	Nachweisbarkeit nach dem letzten Konsum
Blut / Serum / Plasma	Stunden
Urin	Tage
Haare (chronischer oder wiederholter Konsum)	Monate*

^{*} Das Kopfhaar wächst ca. 1 cm pro Monat. In Abhängigkeit von der Haarlänge kann der Konsum rückwirkend über mehrere Monate sequentiell beurteilt werden.


Urin ist bevorzugtes Untersuchungsmaterial zum zeitnahen Nachweis eines Substanzkonsums.

- + Einfach und nicht invasiv zu gewinnen
- + höhere Konzentration als im Blut
- + Längeres Nachweisfenster als im Blut
- "lag time"
- Leicht zu manipulieren
- Wassergehalt des Urins bestimmt die Konzentration und damit im Individualfall die Nachweisbarkeit der Substanz.

Die Bedeutung der Kreatininkonzentration


- Kreatinin wird kontinuierlich und in quasi konstanter Menge im Stoffwechsel gebildet und mit dem Urin ausgeschieden.
- Die Kreatininkonzentration im Urin ist daher ein Maß für den Wassergehalt des Urins.
- Die "normale" Kreatininkonzentration im Urin beträgt 1 g / Liter.
- Urine mit einer Kreatininkonzentration < 0,3 g / Liter werden (in unserem Labor) für Drogenkontrolluntersuchungen bei negativem Ergebnis nicht akzeptiert.

Die Kreatininnormierung am Beispiel von THC

Die Kreatininnormierung am Beispiel von THC

Erst der Bezug der THC-Konzentration auf die Kreatininkonzentration im Urin schließt den Einfluss des schwankenden Wassergehaltes des Urins auf die THC-Konzentration weitgehend aus.

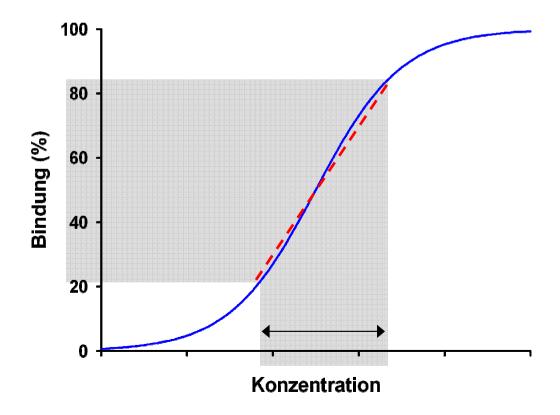
Anforderungen an den "Drogentest"

- Adäquate Empfindlichkeit (wenige falsch-negative Ergebnisse)
- Adäquate Spezifität (wenige falsch-positive Ergebnisse)
- Rasche Verfügbarkeit des Ergebnisses
- Niedrige (= akzeptable) Kosten

Als Screeningtests werden Immunoassays eingesetzt.

Häufig eingesetzte kommerzielle Immunoassays für Drogenkontrolluntersuchungen im Urin

EMIT Enzyme-Multiplied-Immunoassay-Technique


CEDIA Cloned Enzyme Donor Immunoassay

FPIA Fluorescence-Polarisation-Immunoassay

KIMS Kinetic-Interaction of Microparticles in Solution

Das Prinzip des Immunoassays

- Immunoassays sind Bindungsassays.
- Die Bindung ist sättigbar.
- Nur innerhalb eines testspezifischen Bereichs ist die Gesamtkonzentration des Analyten der antikörpergebundenen Fraktion direkt proportional.

Antikörperspezifität / Kreuzreaktivität

 Substanzspezifischer Antikörper reagiert mit nur einer Substanz Kreuzreaktivität nicht erwünscht 	Beispiele: EDDP (Methadonmetabolit MAM (Heroinmetabolit) LSD (Lysergsäurediethylamid)
 Gruppenspezifischer Antikörper reagiert mit einer Gruppe strukturverwandter Substanzen Kreuzreaktivität beabsichtigt 	Beispiele: Amphetamine Opiate Benzodiazepine

Bei allen Immunoassays muss man mit unerwünschten und z. T. nicht vorhersehbaren Kreuzreaktionen rechnen, die zu falsch positiven Untersuchungsergebnissen führen.

Testsensitivität

Jeder Gruppennnachweis ist auf eine Bezugssubstanz kalibriert.

Gruppennachweis	Bezugssubstanz
Opiate	Morphin
Cocain	Benzoylecognin
Cannabinoide	THC-Carbonsäure
Amphetamin / Ecstasy	Methamphetamin / MDA
Benzodiazepine	Nitrazepam

Im Bezug auf diese Bezugssubstanz hat jeder Test:

- Nachweisgrenze (LOD): Vom Rauschen sicher unterscheidbares Messsignal
- Bestimmungsgrenze (LOQ): z. B. Konzentration des niedrigsten Kalibrators.

Das Konzept des cut-off

Für jeden Drogentest ist unter Berücksichtigung LOD und LOQ sowie der jeweiligen Kreuzreaktivität ein Messwert als Entscheidungsgrenze definiert. Dieser festgelegte Messwert ist der cut-off des jeweiligen Tests.

Messwert Proband > cut off: positives Ergebnis

Messwert Proband < cut off: negatives Ergebnis

Der cut off kann in den Grenzen der Testeigenschaften an die Fragestellung angepasst werden. Aber es gilt der Zusammenhang:

Senkung des cut off → Häufigkeit falsch positiver Ergebnisse ↑

Erhöhung des cut off → Häufigkeit falsch negativer Ergebnisse ↑

Qualitätssicherung

Interne Qualitätssicherung:

Tägliche Prüfung des Testablaufs mit zertifiziertem Kontrollmaterial

Externe Qualitätssicherung:

Teilnahme an Ringversuchen (1-2 mal jährlich) unter Leitung von nationalen oder internationalen QK-Institutionen.

Das Untersuchungsmaterial Urin erfordert den Ausschluss von Manipulationen.

- 1) Überwachte Urinabgabe
- 2) Temperaturkontrolle (> 34°C)
- 3) Messung der Kreatíninkonzentration
- 4) "sample check"

Handelt es sich um Urin?
Wassergehalt des Urins tolerierbar?

Nachweisreaktion ungestört?

Häufige Manipulationen

- Abgabe "urinfarbener" Flüssigkeit
- Verdünnen des Urins mit "urinfarbener" Flüssigkeit
- Diuretikagebrauch mit gleichzeitiger Einnahme von Substanzen, die den Urin gelb f\u00e4rben
- Zusatz von Substanzen, die die Antikörperbindung stören (Tenside, Kochsalz, Säure, Lauge, etc.)

Immunoassays als Teststreifen

Nicht-instrumentelle Drogentests (NIDT)

Vorteile

Sofortdiagnostik keine technische Ausrüstung nötig kein Fachpersonal erforderlich

Nachteile

Urinqualität

Kreatininkonzentration? Sample check?

Testqualität

cut off?

Kreuzreaktivität?

Nicht automatisierbar

Ergebnisqualität

nicht objektivierbar nicht digitalisierbar nicht dokumentierbar

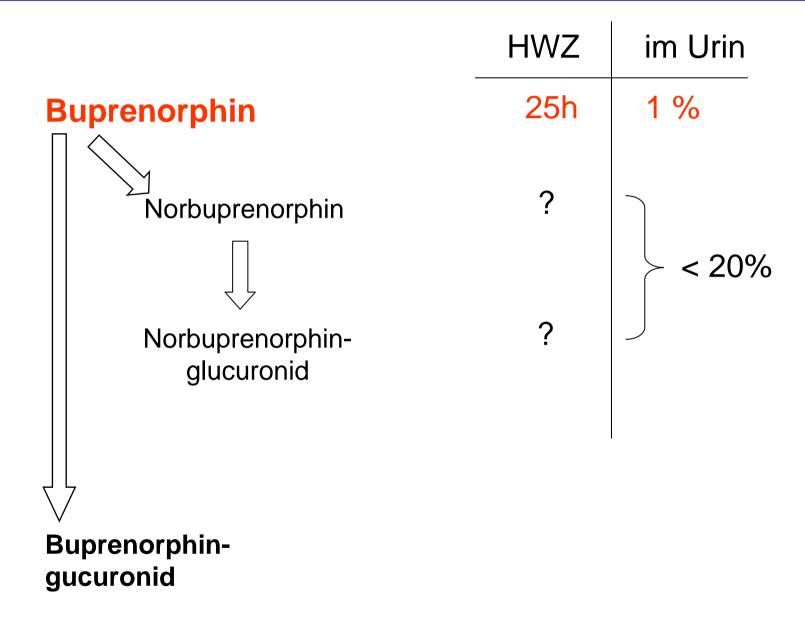
Keine Rückverfolgbarkeit

(",chain of custody")

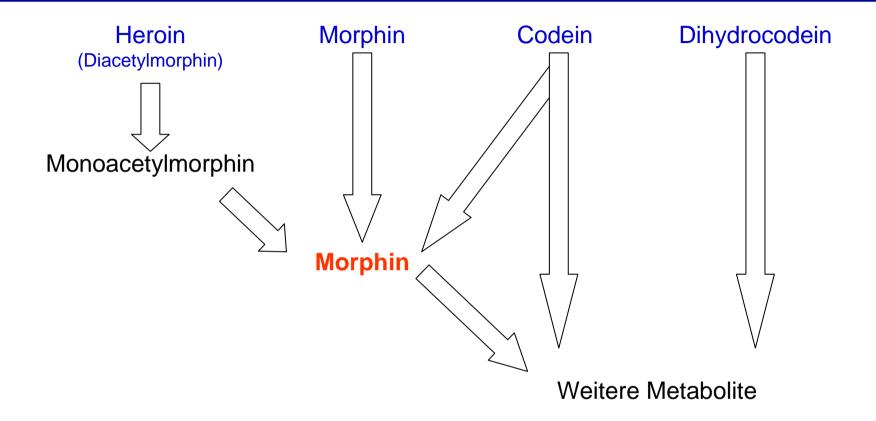
Ausscheidung von Cocain im Urin

	HWZ	im Urin
COCAIN Norcocain	1h	1-9 %
N-Hydroxynorcocain Benzoylecognin	6,5h	35-53 %
Ecognin-Methylester	5,5h	32-49 %
Ecognin		< 5 %
Pyrolyse : Anhydroecognin + Ethanol : Cocaethylen		

Ausscheidung von Methadon


 Für Compliancetestung im Methadonsubstitutionsprogramm ist der Test auf EDDP zu bevorzugen.

(Keine Manipulationsmöglichkeit durch Zugabe von Methadon in die Urinprobe)


Ausscheidung von LSD

	HWZ	im Urin
LSD	4h	1 %
2-Oxo-3-Hydroxy-LSD	10h	1,2 %
andere Metabolite		
• 13-Hydroxy-LSD		
• Nor-LSD		
Desethyl-LSD		

Ausscheidung von Buprenorphin

Opiate und Opioide

- Morphin und Strukturverwandte reagieren positiv im Opiattest.
- Die synthetischen Opioide werden durch den Urintest auf Opiate nicht erfasst: Methadon, Pethidin, Tramadol, Buprenorphin, Fentanyl, Loperamid, Piritramid, Pentazocin u.a.

Die Elimination von Heroin

	HWZ	im Urin
Heroin (Diacetylmorphin)	5 min	0 %
6-Monoacetylmorphin	15 min	1 %
Morphin	5 h	5 %
M-6-Glucuronid, M-3-Glucuronid	8 h	50 %

Ein Heroinkonsum kann nur durch den Nachweis von
 6-Monoacetylmorphin bewiesen werden (sehr kleines Zeitfenster).

Das Mohnkuchenexperiment

Code	Kreatinin [g/l]	Morphinäquivalente [ng/ml]	Opiatnachwe Cut-off 30	
Wehler	0,7	1433	+	
Rohn	0,29	208		
Lehmann	0,75	512	+	
Riesenklops	1,86	1023	+	
Sheep	0,88	673	+	
Crocodylus	1,71	1356	+	
Koala	1,38	1677	+	
Nina	0,03	1966	+	
Mende	1,37	1495	+	
Dornröschen	0,66	872	+	

• Der Verzehr mohnhaltiger Nahrungsmittel kann zu einem positiven Opiatnachweis führen.

Cannabinoide

Cannabinoide: ca. 60 strukturell verwandte Cannabis-Inhaltsstoffe

Hauptkomponenten: Tetrahydrocannabinol (THC)

Cannabidiol

Cannabinol

11-Hydroxy- Δ -9-THC

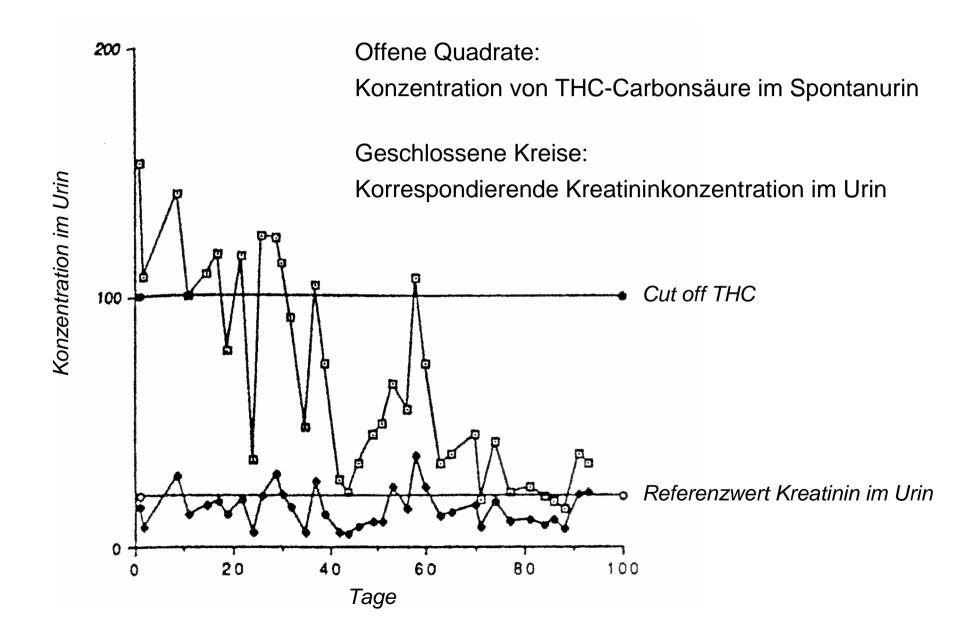
11-Nor-△-9-THC-Carbonsäure

11-Nor-△-9-THC-Carbonsäure-Glucuronid

Weitere Metabolite: 8-α-Hydroxy-THC

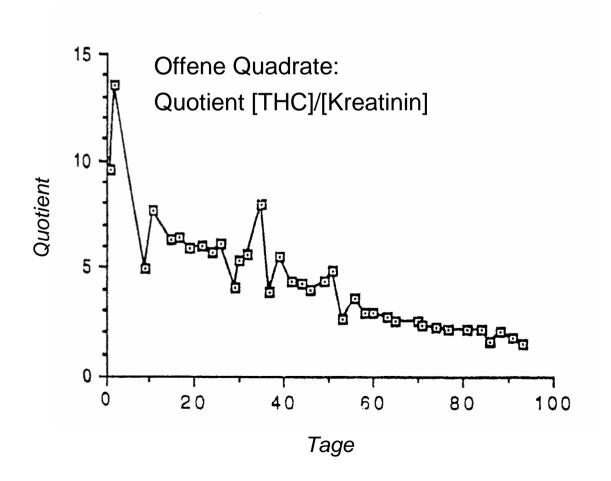
 $8-\beta$ -Hydroxy-THC

 $8-\alpha$ -11-Hydroxy-TCH

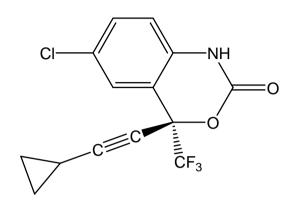

u.a.

Die Elimination von THC

	HWZ	im Urin
Tetrahydrocannabinol (THC) 8-Hydroxy-Δ-9-THC	3 Tage	0 %
11-Hydroxy-Δ-9-THC 2'-Hydroxy-Δ-8-THC	4 Tage	0 %
11-Nor-Δ-9-THC-COOH	1 Woche	5 %
11-Nor-Δ-9-THC-COOH-Glucuronid	1 Woche	20 %


- Häufig vom Einsender gewünscht: Eliminationskinetik
 Probleme: a) Gruppennachweis von THC-Metaboliten
 - b) Fehlende Linearität im erforderlichen Konzentrationsbereich

Die Kreatininnormierung am Beispiel von THC


Die Kreatininnormierung am Beispiel von THC

Erst der Bezug der THC-Konzentration auf die Kreatininkonzentration im Urin schließt den Einfluss des schwankenden Wassergehaltes des Urins auf die THC-Konzentration weitgehend aus.

Problem: Falsch positive THC-Werte (CEDIA) durch Efavirenz

 Efavirenz (Sustiva®) ist ein nichtnukleosidischer Reversetranskriptase Inhibitor und Bestandteil der antiretroviralen HIV-Therapie

- Stark metabolisiert
- Nicht oder nur in Spuren im Urin nachweisbar
- Hauptmetabolit: 8-OH-glucuronid
- Auch direkt an Glucuronsäure gekoppelt vorkommend
- Weitere Metabolite

Ausgewählte Amphetamin-Derivate

Methamphetamin

Amphetamin

"Ecstasy"

Methylendioxymethamphetamin (MDMA)

Methylendioxyamphetamin (MDA)

Methylendioxyethylamphetamin (MDE)

Methylenbenzodioxolylbutanamin (MBDB)

- Spezielle Assays f
 ür Amphetamine bzw. Ecstasy
- Kombinierte Assays für Amphetamine und Ecstasy (zwei Antikörper)
- Amphetaminassays sind anfällig für unerwünschte Kreuzreaktionen (z. B. weil sich das Katecholamingrundgerüst in vielen Substanzen wiederfindet.)

Pharmakokinetische Parameter Amphetamin(e) / Ecstasy

	f (oral)	Vd [L/kg]	PIEW- Bindung	Unverändert renal [%] (p	t ½ [h] H-abhängiç	Nachweis im Urin g)
Metamphetamin	70 %	3-4	niedrig	40-45	10-30	
Amphetamin	100 %	3-5	15-42 %	3-60	4-30	
MDMA				65	8	
MDA				hoch	3-8	1 bis 2
MDE						2 Tage
НМЕ						
MBDB						
BDB						

Nachweis von Benzodiazepinen

- Grosse Substanzgruppe mit vielen, teilweise identischen Metaboliten und sehr unterschiedlichen therapeutischen Konzentrationsbereichen.
- Eine Erhöhung der Sensitivität gelingt durch Deglucuronidierung der Metabolite in der Urinprobe vor der Analyse.
- Ein Alptraum ist die sichere chromatographische Identifizierung im Urin mit vertretbarem Aufwand.
 - Die Chromatographie sollte primär aus Blut, Plasma oder Serum erfolgen.

Beispiel: Benzodiazepine (Kinetische Daten)

Benzodiazepin	Ther. Konz. [ng/ml]	HWZ [h] Benzodiazepin		Ther. Konz. [ng/ml]	HWZ [h]
Alprazolam	5-80	14	Loprazolam	5-150	6,3
Bromazepam	80-170	22	Lorazepam	25-250	15
Brotizolam	5-20	6	Lormetazepam	5-30	12
Chlordiazepoxid	700-2000	16	Medazepam	10-500	12
Clobazam	100-400	18	Metaclazepam	50-200	15
Clonazepam	30-60	23	Midazolam	40-250	1,5
Clotiazepam	100-700	4 Nitrazepam		30-120	28
Demoxepam	300-2800	37	Nordazepam	200-800	48
Diazepam	125-750	35	Oxazepam	200-2000	8
Estazolam	20-100	15	Temazepam	20-500	10
Flunitrazepam	1-15	20 Tetrazepam		300-1000	18
Flurazepam	5-50	2,5	Triazolam	2-20	3

Nachweisdauer von Substanzen im Urin mittels Immunoassays

Substanz	Nachweisbarkeit	Bemerkung
Amphetamine/ Ecstasy	2-3 Tage	Stark vom Urin-pH abhängig
Barbiturate	1-3 Tage 0-1 Tag	Secobarbital ca. 1 Tag (kurz wirksam) Phenobarbital 2-3 Wochen (lang wirksam) Hexobarbital, Thiopental (ultrakurz wirksam)
Benzodiazepine	5-7 Tage 1-6 Monate ca. 1 Tag 0-1 Tag	z.B. Diazepam nach therapeutischer Einnahme nach Langzeiteinnahme Lormetazepam, Lorazepam, Alprazolam Triazolam
Cannabinoide	1-3 Tage 5 Tage 10 Tage 2-3 Monate	Einmaliger Konsum Mäßiger Konsum (4 x pro Woche) Täglicher Konsum Chronischer Konsum
Cocain	2-3 Tage > 3 Tage	Bei tägl. Crack-Konsum und Senkung des cut off
Heroin	< 1 Tag	
LSD	1-2 Tage	
Methadon	2-3 Tage	Vom Urin-pH abhängig
Opiate	1-3 Tage	
Buprenorphin	1 Tag	

Immunologische Drogenkontrolluntersuchungen in unserem Labor

Substanz	Bezugssubstanz	Cut off [ng/ml]	Chromatographische Bestätigung durch
Amphetamine/ Ecstasy	d-Methamphetamin / MDMA	1000	LC/MS-MS
Barbiturate	Secobarbital	200	HPLC, GC, GC/MS
Benzodiazepine	Oxazepam	200	HPLC, GC, GC/MS
Cannabinoide	11-nor-∆ ⁹ -THC-Carbonsäure	50	GC/MS
Cocain	Benzoylecognin	300	GC/MS
Heroin	Monoacetylmorphin (6-MAM)	10	GC/MS
LSD	LSD	0,5	LC/MS-MS
Methadon	EDDP	100	GC/MS
Opiate	Morphin	300	GC/MS
Buprenorphin	Buprenorphin	5	GC/MS

Nicht immunologische Tests auf Missbrauchssubstanzen im Urin in unserem Labor

- Gammahydroxybuttersäure (GHB) oder "Liquid ecstasy"
- Psilocybin / Psilocin aus "magic mushrooms"
- Atropin und Scopolamin aus Nachtschattenextrakten
- Weitere auf spezielle Anforderung

Was immunologische Drogenkontrolluntersuchungen nicht leisten können:

- Die konsumierte Dosis der Missbrauchssubstanz feststellen
- Die Art der Applikation (geschluckt, gespritzt, geraucht etc.)
 feststellen
- Den Zeitpunkt des Konsums feststellen
- Die individuelle Wirkung der Substanz beim einzelnen Probanden bewerten.

Drogentests im Justizvollzug – Anforderungen an Materialgewinnung und Interpretation

- Identität des Urins sicherstellen!
- Bei Bewertung des Ergebnisses schwankenden Wassergehalt des Urins berücksichtigen (Kreatininkonzentration)!
- Alle Immunoassays für Drogentests sind qualitativ;
 Entscheidungsgrenze ist der testspezifische cut off.
- Alle Immunoassays können falsch positive Ergebnisse liefern.
- Rechtsrelevante Analysenergebnisse erfordern immer eine chromatographische Bestätigungsanalyse (zumeist GC/MS oder LC/MS).
- Quantitative Analysen einzelner Markersubstanzen, Darstellung von Metabolitenmustern und kinetische Bewertungen erfordern eine chromatographische Analyse.